工业和信息化部办公厅关于开展2018年智能制造试点示范项目推荐的通知
工信厅装函〔2018〕117号
各省、自治区、直辖市及计划单列市、新疆建设兵团工业和信息化主管部门:
为落实《中国制造2025》总体部署,按照《智能制造发展规划(2016-2020年)》《智能制造工程实施指南(2016-2020年)》的要求,现开展2018年智能制造试点示范项目推荐工作。有关事项通知如下:
一、项目推荐条件
(一)项目实施单位应在中华人民共和国境内注册,具有独立法人资格,运营和财务状况良好。
(二)项目技术应处于国内领先或国际先进水平,项目使用的关键技术装备、工业软件需安全可控。
(三)项目须符合《2018年智能制造试点示范项目要素条件》(见附件1)要求,且具有较强的可复制可推广性。
(四)项目须已投入运营,且在降低运营成本、缩短产品研制周期、提高生产效率、降低产品不良品率、提高能源利用率等方面已取得显著成效并持续提升,具有良好的成长性。
二、推荐工作要求
(一)试点示范项目由项目所在地工业和信息化主管部门组织推荐。各省、自治区、直辖市工业和信息化主管部门推荐的试点示范项目一般不超过15项,各计划单列市、新疆生产建设兵团工业和信息化主管部门推荐的试点示范项目一般不超过10项,中央企业项目通过所在地工业和信息化主管部门申报,申报企业对智能制造试点示范项目申报书(见附件2)内容的真实性负责。
(二)推荐工作应遵循政府引导、企业自愿原则。优先在新型工业化产业示范基地、工业稳增长和转型升级成效明显市(州)中,推荐基础条件好、成长性强、符合两化融合管理体系标准要求、开展多种模式试点示范的项目。优先推荐2015-2017年智能制造试点示范项目未涉及行业的项目,优先推荐智能制造综合标准化和新模式应用支持的项目。推荐部门应加强对最终确定的试点示范项目的指导,并鼓励对其发展智能制造给予优先支持。
(三)请各地方工业和信息化主管部门按推荐项目的优先顺序填报智能制造试点示范推荐项目汇总表(见附件3),并于2018年5月15日前将项目汇总表一式两份、申报书一式五份及其电子版报送工业和信息化部(装备工业司)。有关2015-2017年已确定的智能制造试点示范项目可在工业和信息化部门户网站(www.miit.gov.cn)下载查询。
三、联系方式
联系人:夏鹏 王影 010-68205634/68205626
邮 箱:xiapeng @ miit.gov.cn
地 址:北京市西长安街13号工业和信息化部装备工业司(100804)
附件
1.
2018年智能制造试点示范项目要素条件.doc
2.
智能制造试点示范项目申报书.doc
3.
2018年智能制造试点示范项目推荐项目汇总表.doc
工业和信息化部办公厅
2018年4月2日
附件:
2018年智能制造试点示范项目要素条件
根据《智能制造发展规划(2016-2020年)》《智能制造工程实施指南(2016-2020年)》的要求,重点围绕五种智能制造模式,鼓励新技术集成应用,开展智能制造试点示范。为做好项目遴选工作,特制订本要素条件。
一、智能制造模式要素条件
(一)离散型智能制造
1.车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。
2.应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。建立产品数据管理系统(PDM),实现产品设计、工艺数据的集成管理。
3.制造装备数控化率超过70%,并实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备之间的信息互联互通与集成。
4.建立生产过程数据采集和分析系统,实现生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。
5.建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效等管理功能。建立企业资源计划系统(ERP),实现供应链、物流、成本等企业经营管理功能。
6.建立工厂内部通信网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及制造过程与制造执行系统(MES)和企业资源计划系统(ERP)的信息互联互通。
7.建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的产品全生命周期闭环动态优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。
(二)流程型智能制造
1.工厂总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现生产流程数据可视化和生产工艺优化。
2.实现对物流、能流、物性、资产的全流程监控,建立数据采集和监控系统,生产工艺数据自动数采率达到90%以上。实现原料、关键工艺和成品检测数据的采集和集成利用,建立实时的质量预警。
3.采用先进控制系统,工厂自控投用率达到90%以上,关键生产环节实现基于模型的先进控制和在线优化。
4.建立生产执行系统(MES),生产计划、调度均建立模型,实现生产模型化分析决策、过程量化管理、成本和质量动态跟踪以及从原材料到产成品的一体化协同优化。建立企业资源计划系统(ERP),实现企业经营、管理和决策的智能优化。
5.对于存在较高安全与环境风险的项目,实现有毒有害物质排放和危险源的自动检测与监控、安全生产的全方位监控,建立在线应急指挥联动系统。
6.建立工厂通信网络架构,实现工艺、生产、检验、物流等制造过程各环节之间,以及制造过程与数据采集和监控系统、生产执行系统(MES)、企业资源计划系统(ERP)之间的信息互联互通。
7.建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现生产过程动态优化,制造和管理信息的全程可视化,企业在资源配置、工艺优化、过程控制、产业链管理、节能减排及安全生产等方面的智能化水平显著提升。
(三)网络协同制造
1.建有网络化制造资源协同云平台,具有完善的体系架构和相应的运行规则。
2.通过协同云平台,展示社会/企业/部门制造资源,实现制造资源和需求的有效对接。
3.通过协同云平台,实现面向需求的企业间/部门间创新资源、设计能力的共享、互补和对接。
4.通过协同云平台,实现面向订单的企业间/部门间生产资源合理调配,以及制造过程各环节和供应链的并行组织生产。
5.建有围绕全生产链协同共享的产品溯源体系,实现企业间涵盖产品生产制造与运维服务等环节的信息溯源服务。
6.建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
通过持续改进,网络化制造资源协同云平台不断优化,企业间、部门间创新资源、生产能力和服务能力高度集成,生产制造与服务运维信息高度共享,资源和服务的动态分析与柔性配置水平显著增强。
(四)大规模个性化定制
1.产品采用模块化设计,通过差异化的定制参数,组合形成个性化产品。
2.建有基于互联网的个性化定制服务平台,通过定制参数选择、三维数字建模、虚拟现实或增强现实等方式,实现与用户深度交互,快速生成产品定制方案。
3.建有个性化产品数据库,应用大数据技术对用户的个性化需求特征进行挖掘和分析。
4.个性化定制平台与企业研发设计、计划排产、柔性制造、营销管理、供应链管理、物流配送和售后服务等数字化制造系统实现协同与集成。
通过持续改进,实现模块化设计方法、个性化定制平台、个性化产品数据库的不断优化,形成完善的基于数据驱动的企业研发、设计、生产、营销、供应链管理和服务体系,快速、低成本满足用户个性化需求的能力显著提升。
(五)远程运维服务
1.采用远程运维服务模式的智能装备/产品应配置开放的数据接口,具备数据采集、通信和远程控制等功能,利用支持IPv4、IPv6等技术的工业互联网,采集并上传设备状态、作业操作、环境情况等数据,并根据远程指令灵活调整设备运行参数。
2.建立智能装备/产品远程运维服务平台,能够对装备/产品上传数据进行有效筛选、梳理、存储与管理,并通过数据挖掘、分析,向用户提供日常运行维护、在线检测、预测性维护、故障预警、诊断与修复、运行优化、远程升级等服务。
3.智能装备/产品远程运维服务平台应与设备制造商的产品全生命周期管理系统(PLM)、客户关系管理系统(CRM)、产品研发管理系统实现信息共享。
4.智能装备/产品远程运维服务平台应建立相应的专家库和专家咨询系统,能够为智能装备/产品的远程诊断提供智能决策支持,并向用户提出运行维护解决方案。
5.建立信息安全管理制度,具备信息安全防护能力。通过持续改进,建立高效、安全的智能服务系统,提供的服务能够与产品形成实时、有效互动,大幅度提升嵌入式系统、移动互联网、大数据分析、智能决策支持系统的集成应用水平。
二、新技术创新应用要素条件
(一)工业互联网
1.建立工业互联网工厂内网,采用工业以太网、工业PON、工业无线、IPv6等技术,实现生产装备、传感器、控制系统与管理系统等的互联,实现数据的采集、流转和处理;利用IPv6、工业物联网等技术,实现与工厂内、外网的互联互通,支持内、外网业务协同。
2.采用各类标识技术自动识别零部件、在制品、工序、产品等对象,在仓储、生产过程中实现自动信息采集与处理,通过与国家工业互联网标识解析系统对接,实现对产品全生命周期管理。
3.实现工厂管理软件之间的横向互联,实现数据流动、转换和互认。
4.在工厂内部建设工业互联网平台,或利用公众网络上的工业互联网平台,实现数据的集成、分析和挖掘,支撑智能化生产、个性化定制、网络化协同、服务化延伸等应用。
5.通过部署和应用工业防火墙、安全监测审计、入侵检测等安全技术措施,实现对工业互联网安全风险的防范、监测和响应,保障工业系统的安全运行。
(二)人工智能
1.关键制造装备采用人工智能技术,通过嵌入计算机视听觉、生物特征识别、复杂环境识别、智能语音处理、自然语言理解、智能决策控制以及新型人机交互等技术,实现制造装备的自感知、自学习、自适应、自控制。
2.结合行业特点,基于大数据分析技术,应用机器学习、知识发现与知识工程以及跨媒体智能等方法,在产品质量改进与缺陷检测、生产工艺过程优化、设备健康管理、故障预测与诊断等关键环节具备人工智能特征。
3.目标产品采用智能感知、模式识别、智能语义理解、智能分析决策等核心技术,实现复杂环境感知、智能人机交互、灵活精准控制、群体实时协同等方面性能和智能化水平的显著提高。
4.人工智能技术已在产品开发、制造过程等产品全生命周期过程中实际运用,实现对制造过程优化,技术方案和应用模式等具有可复制性、可推广性。